GrĂąceĂ son aptitude Ă puiser l'eau dans le sol, le sorgho a Ă©galement une grande capacitĂ© Ă y prĂ©lever l'azote minĂ©ral. De ce fait, les apports d'azote par les engrais peuvent ĂȘtre modĂ©rĂ©s. L'azote contribue essentiellement Ă la dĂ©termination du nombre de grains par panicule, il faudra donc l'apporter impĂ©rativement avant le stade gonflement (formation des gamĂštes - 12
Uneaubaine pour les spĂ©culateurs. Et des difficultĂ©s supplĂ©mentaires pour le secteur agricole aux Etats-Unis et les consommateurs de fruits et de lĂ©gumes au QuĂ©bec. Bien entendu, la mise de lâeau en Bourse nâa aucun effet sur le manque dâeau Continuer la lecture de La valeur de lâeau en Bourse atteint des sommets â
Enpleine Terre : le substrat sera drainant Ă extrĂȘmement drainant (30% jusqu'Ă 80% de matĂ©riel drainant) en fonction de la pluviomĂ©trie et donc de la zone de culture ainsi que de l'espĂšce cultivĂ©e. Cette configuration permet Ă une majoritĂ© de plantes de pleinement rĂ©vĂ©ler leur potentiel de croissance, ne le nĂ©gligez pas !
Toutdâabord, une des consĂ©quences de lâobĂ©sitĂ© pour la santĂ© de votre chat est le diabĂšte, principalement le diabĂšte de type II. Il sâagit dâune maladie grave, oĂč le taux de sucre (glucose)
Uneentreprise familiale de Torrox a développé DeepDrop, un systÚme capable d'économiser de grandes quantités d'eau dans les plantations agricoles. Face à l'augmentation des sécheresses en Espagne, ces solutions technologiques deviennent de plus en plus indispensables. Certaines solutions sont élaborées et complexes, d'autres sont apparemment
CultureDe La Culture Canal Pour Conduire L'eau Il Conduit L'eau Du Marais Jusqu'Ă La Mer Voit L'eau Arriver Jusqu'aux Pores L Eau Lui Arrive Jusqu Aux Cotes Voit L Eau Arriver Jusqu Aux Pores Il Amene L Eau De Mer Jusqu Aux Marais Salants Pour Une Culture Artificielle Dans De L'eau Contenant Des Sels Nutritifs
Encas de non respect des rĂšgles locales de restriction dâeau, les procĂ©dures varient dâun simple rappel Ă la loi jusquâĂ lâamende de cinquiĂšme classe qui va jusquâĂ 1 500 euros pour la premiĂšre fois et 3 000 euros en cas de rĂ©cidive. Et pour une personne morale, donc une entreprise, une exploitation agricole par exemple, ça peut monter jusquâĂ plus de 7 000 euros.
ï»żJentrepris donc non point un abrĂ©gĂ© de mon grand ouvrage, mais une histoire nouvelle , dans laquelle, les yeux uniquement fixĂ©s sur les peuples libres de lâItalie, je me suis efforcĂ© de peindre, dans une proportion qui leur laissĂąt de la vie, leur premiĂšre dĂ©livrance, leur hĂ©roĂŻsme et leurs malheurs. Je me suis renfermĂ© dans le cadre matĂ©riel qui mâavait Ă©tĂ© assignĂ©* : c
LaVille de Fredericton procĂ©dera au rinçage annuel de ses conduites dâeau principales Ă compter du lundi 16 mai, une opĂ©ration qui devrait se poursuivre jusquâĂ la semaine du 18 juillet 2022. Cette annĂ©e, les opĂ©rations de rinçage incluront une partie du secteur sud (circuit de basse pression) et lâensemble du secteur nord. Durant la premiĂšre semaine, nos Ă©quipes travailleront
VĂ©tustes un peu moins de 200 km de conduites d'eau approvisionnant la Capitale ont besoin d'ĂȘtre renouvelĂ©es d'aprĂšs le PrĂ©sident de la RĂ©publique Ă l'occasion de sa premiĂšre rencontre avec le monde de la presse pour cette nouvelle annĂ©e Ă Iavoloha. En effet, le rĂ©seau de distribution est saturĂ© depuis bien longtemps. On ne mentionnera plus les consommations
2aYlRqz. Pour une estimation fiable de lâĂ©vapotranspiration maximale, on utilise les coefficients culturaux, qui sont obtenus Ă partir des rĂ©sultats de nombreuses expĂ©rimentations agronomiques. LâĂ©vapotranspiration est mesurĂ©e expĂ©rimentalement puis comparer Ă lâETref pour tirer le Kc. Lâeau contenue dans le sol est retenue par des forces de tension superficielle. Ces forces sont donc caractĂ©risĂ©es par une variable appelĂ©e communĂ©ment tension, exprimĂ©e en unitĂ© de pression cbar. Lâorgane de mesure est inclus dans la capsule constituĂ©e dâun matĂ©riau poreux, dont la tension hydrique sous certaines conditions, devient Ă©gale Ă celle du sol environnant. Les capsules sont placĂ©es Ă la profondeur voulue en diffĂ©rents points de la parcelle. Les sondes Ă©lectriques sont constituĂ©es, dâune part des sondes proprement dites placĂ©es dans le sol et dâautre part, dâun boĂźtier permettant, aprĂšs branchement sur une sonde - Dâanalyser ce signal et de le traduire en termes de 3 un tensiomĂštre et son cadran manomĂštrePhoto4 Les sondes avec un thermomĂštre introduit dans le sol et le boĂźtier pour lire les de lecture Mise en place Apres avoir montĂ© les sondes on doit les introduire dans lâeau pendant deux Ă trois heures. En suite, on doit prĂ©parer un avant-trou Ă lâaide dâune barre mĂ©tallique de mĂȘme diamĂštre que le tensiomĂštre, sur laquelle on fait un repĂšre de profondeur dĂ©sirĂ©e. Le tensiomĂštre est alors placĂ© de force jusquâĂ la profondeur voulue. La profondeur des sondes La profondeur des sondes est gĂ©nĂ©ralement choisie par lâirrigant, mais selon la culture et son stade physiologique. Chaque fois, on fait des profils du sol Ă cĂŽtĂ© des racines pour dĂ©terminer la profondeur racinaire la plus active. Câest donc cette profondeur lĂ qui doit ĂȘtre ciblĂ©e par lâirrigant pour les sondes de surfaces. La sonde de profondeur est installĂ©e dans la profondeur racinaire la moins active pour contrĂŽler les pertes par infiltration. Dans le cas des agrumes les premiers sont enfouies Ă une profondeur de 30 cm les deuxiĂšmes Ă 60cm. â Les avantages Contrairement aux tensiomĂštres classiques Lâabsence du circuit hydrique permet une prĂ©paration trĂšs simplifiĂ©e, une maintenance en Ă©tat de fonctionnement grandement facilitĂ©e, une bonne rĂ©sistance au gel et un stockage sans problĂšme. La gamme de mesure est plus Ă©tendue vers les fortes tensions, jusquâĂ 200 cbars. â Les inconvĂ©nients Ce sont des appareils trĂšs coĂ»teux, six paires de sondes et un boĂźtier coĂ»tent 7000 dh ; Leur utilisation nĂ©cessite un rĂ©glage sur le boĂźtier en fonction de la tempĂ©rature. Il faut donc mesurer cette tempĂ©rature, ce qui nĂ©cessite un thermomĂštre du sol ; Leur utilisation nĂ©cessite une main dâĆuvre qualifiĂ©e ; Amortissables sur quatre ans. Le plus grand inconvĂ©nient est le risque dâendommager lâappareil pendant la mise en place forcĂ©e. 1- Pilotage de lâirrigation localisĂ©e des agrumes par la mĂ©thode du dendromĂštre. La dĂ©termination du volume dâeau Ă apporter aux cultures et du moment opportun pour dĂ©clencher lâirrigation sont souvent dĂ©cidĂ©s Ă partir de contrĂŽles indirects de lâĂ©tat hydrique du sol, si non, par simple apprĂ©ciation visuelle. Or, le vĂ©gĂ©tal est le meilleur indicateur de son propre Ă©tat et de ses interactions avec le milieu. Dans ce contexte, plusieurs mĂ©thodes directes, notamment la teneur en eau des feuilles et le potentiel hydrique foliaire, ainsi que des mĂ©thodes indirectes, telles que la rĂ©sistance stomatique et la tempĂ©rature foliaire, ont Ă©tĂ© proposĂ©es. Elles exigent des mesures destructives, difficiles Ă mettre en Ćuvre, demandent de longues manipulations et leur automatisation nâest pas facile. Lâune des mĂ©thodes indirectes consiste Ă suivre les micro-variations du diamĂštre des organes vĂ©gĂ©taux et en particulier de la tige Elias-Nassif, 1998. En effet, PEPISTA est un dendromĂštre dĂ©veloppĂ© par INRA France en 1984. Il mesure le diamĂštre de la plante et indirectement lâĂ©tat de turgescence de ses cellules afin dâajuster lâirrigation au plus prĂšs des besoins des plantes. IL est dotĂ© pour cela dâun capteur micro-morpho-mĂ©trique qui peut ĂȘtre placĂ© sur diffĂ©rentes parties du vĂ©gĂ©tal tige, branche ou fruit. Ce capteur mesure le grossissement et la contraction de lâorgane en question au centiĂšme de millimĂštre. La mĂ©thode PEPISTA fait appel Ă un dispositif automatique et autonome. Il a pour vocation dâajuster lâirrigation au plus prĂšs des besoins des plantes, grĂące Ă la mesure trĂšs prĂ©cise des variations du diamĂštre de la ramification. LâinterprĂ©tation des mesures a comme objectif de repĂ©rer le moment dâirrigation de la culture en question, en sâappuyant sur lâanalyse simultanĂ©e de lâintensitĂ© des pertes provisoires de diamĂštre au cours de la journĂ©e et du bilan dâĂ©volution croissance ou dĂ©croissance au pas de 24 heures. â Principe de PEPISTA Le systĂšme PEPISTA est basĂ© sur un principe de biologie trĂšs simple. Pour assurer son activitĂ© de photosynthĂšse, une plante absorbe lâeau par les racines et la transpire par les feuilles. DĂšs quâelle transpire plus quâelle nâabsorbe, la plante mobilise ses propres rĂ©serves en eau. Lorsque la demande diminue la plante reconstitue ses rĂ©serves. Ceci se traduit par une variation du volume des cellules et une variation du diamĂštre des tiges. En effet, Le systĂšme PEPISTA est basĂ© sur lâinterprĂ©tation simultanĂ©e des variations de deux mesures biologiques sur une pĂ©riode de 48 heures Katerji, et al. 1994 Lâamplitude de contraction AC qui est la diffĂ©rence entre la mesure maximale de dĂ©but de matinĂ©e et la mesure minimale de dĂ©but dâaprĂšs midi du mĂȘme jour. LâAC est une image de lâintensitĂ© maximum du dĂ©sĂ©quilibre normal entre la transpiration des feuilles et lâabsorption de lâeau par les racines pendant la pĂ©riode dâune journĂ©e, lorsque la demande climatique augmente rayonnement solaire, tempĂ©rature.... Par consĂ©quent, lâAC nous permet de savoir si ce stress est liĂ© Ă un problĂšme dâalimentation en eau ; si cette amplitude augmente, cela signifie que la plante utilise ses rĂ©serves dâeau et donc que lâeau nâest pas disponible facilement dans le sol Baranger, 2002 ; La croissance CRJ ou Ă©volution nette câest la variation de diamĂštre, mesurĂ©e Ă 6 heures du matin, au cours des 24 heures qui prĂ©cĂšdent. LâinterprĂ©tation de CRJ est trĂšs importante car elle donne des indications prĂ©cieuses sur lâintensitĂ© du stress hydrique. Les valeurs positives de CRJ signifient le gain de croissance. A lâopposĂ©, un approvisionnement en eau insuffisant ralentit cette croissance puis la bloque CRJ=0, si le stress hydrique persiste, la plante se dĂ©shydrate de plus en plus, et les valeurs de CRJ deviennent nĂ©gatives. Figure 2 Tendances dâĂ©volution du diamĂštre d'un tronc. â MatĂ©riel de mesure Les instruments utilisĂ©s par la mĂ©thode PEPISTA sont de plusieurs types § Un boĂźtier Ă©lectronique avec un logiciel spĂ©cifique, qui est Ă la fois cĆur et cerveau du systĂšme. § Capteurs pour mesurer la variation micromĂ©trique de diamĂštre. § Logiciel sur ordinateur pour visualiser les courbes de croissance. La mĂ©thode PEPISTA peut ĂȘtre couplĂ©e Ă d'autres types de capteurs tensiomĂštre..., et intĂšgre ainsi plusieurs sources d'informations, pour devenir la base d'un ensemble d'outils d'aide Ă la dĂ©cision. Le schĂ©ma gĂ©nĂ©ral du systĂšme de mesure PEPISTA est illustrĂ© par la figure 2. Celle-ci comprend a- un capteur de dĂ©placementb- une visserie pour la fixation du capteur c- un cylindre guide pour le capteur d- une tige INVAR e- une visserie pour la fixation de la tige INVAR f- un ressort de stabilisation g- une tige sensible h- un anneau plastique i- des stabilisateurs j- un stabilisateur supplĂ©mentaire en forme de V. Figure 3 SchĂ©ma dâun porte-capteur du systĂšme PEPISTAUne aiguille de fer doux fixĂ©e Ă lâorgane observĂ© se dĂ©place Ă lâintĂ©rieur de lâaxe creux de la bobine lors de toute modification du diamĂštre de la branche Agostini et Fontana, 1992. Le signal Ă©lectrique correspondant est stockĂ© dans un module dâacquisition de donnĂ©es. La rĂ©solution de la mesure permet dâenregistrer toute variation de lâordre de dix microns Huguet, 1985. Selon la culture, le fournisseur du dendromĂštre garde lâexclusivitĂ© de fixer un seuil dâamplitude de contraction SAC qui traduit lâintensitĂ© du stress hydrique dans un contexte donnĂ©. Pour la culture des agrumes pratiquĂ©e dans la zone Ă©tudiĂ©e, la valeur prĂ©-dĂ©finie du SAC est Ă©gale Ă 60, câest-Ă -dire quâune contraction infĂ©rieure Ă 60 micromĂštres traduit un confort hydrique de lâarbre. En fonction des valeurs de CRJ et AC enregistrĂ©es, la mĂ©thode du dendromĂštre donne les messages suivants, prĂ©sentĂ©s au tableau 13 Messages donnĂ©s par le dendromĂštre en fonction de CRJ et de AC. Message du dendromĂštre Croissance CRJ Contraction AC Forte humiditĂ© > 0 †SAC Absence de stress hydrique >0 >0 DĂ©but de stress †0 > SAC Rameau Ă Croissance Faible > 0 pendant 1 Ă 2 jours, > ou < au SAC Rameau Ă Croissance Nulle †0 < SAC â Les avantages Lâavantage de cette mĂ©thode est quâelle sâappuie sur des mesures automatisables non destructives. â Les inconvĂ©nients Les inconvĂ©nients sont que cette mĂ©thode ne donne aucune idĂ©e sur lâĂ©tat hydrique du sol, son application nĂ©cessite une dĂ©termination prĂ©alable de la valeur seuil correspondant Ă lâapparition de la contrainte hydrique. Or celle-ci varie fortement selon lâespĂšce, la dimension de lâorgane mesurĂ© et prĂ©sente une variabilitĂ© importante entre plantes au sein dâune mĂȘme population. Vient sâajouter a cela, la faible technicitĂ© des ouvriers et le prix Ă©levĂ© des dendromĂštres. Quelque soit la mĂ©thode adoptĂ©e, le pilotage de lâirrigation ne peut se faire de maniĂ©re adĂ©quate, que si le rĂ©seau dâirrigation est bien entretenu, autrement dit, a quoi sert le calcule de la dose et la frĂ©quence dâirrigation, si on est pas sĂ»r que cette dose sera vraiment donnĂ©e Ă la plante ? I. OpĂ©rations de contrĂŽle du rĂ©seau d'irrigation 1. ContrĂŽle de la propretĂ© des filtres Avant le dĂ©marrage de la motopompe, on nettoiera la purge de l'hydrocyclone et on ouvrira le filtre Ă lamelles pour contrĂŽler sa propretĂ©. AprĂšs dĂ©marrage de la motopompe, on pourra lire sur les manomĂštres la pression indiquĂ©e Ă l'entrĂ©e et la sortie du filtre Ă lamelles figure 11voir fichier pdf si la diffĂ©rence entre ces deux pressions est supĂ©rieure Ă 0,3 bars, il faut procĂ©der au nettoyage. Ce mĂȘme type de contrĂŽle de la pression Ă l'entrĂ©e et la sortie peut ĂȘtre pratiquĂ© pour d'autres types de filtres filtres Ă sable et Ă tamis. Pour l'entretien de l'hydrocyclone, on nettoie la purge ou on ouvre la vanne de dĂ©charge. Le contrĂŽle des filtres est frĂ©quent lorsque les eaux d'irrigation sont chargĂ©es. 2. ContrĂŽle pression dans le rĂ©seau o ContrĂŽler tous les 15 jours le manomĂštre placĂ© Ă l'entrĂ©e de la station de tĂȘte. Pour l'exemple de l'exploitation tomate, la pression doit ĂȘtre de 3,1 bars. Si cette pression n'est pas atteinte, ceci indique qu'un problĂšme existe au niveau de la motopompe qui doit ĂȘtre rĂ©parĂ©e. o A l'aide des manomĂštres, contrĂŽler la diffĂ©rence de pression entre l'entrĂ©e et la sortie du filtre, si celle-ci est supĂ©rieure Ă 0,3 bars il faut procĂ©der au nettoyage du filtre. o ContrĂŽler la pression Ă l'entrĂ©e et Ă la sortie de l'injecteur pendant la pĂ©riode de la garantie du matĂ©riel, pour voir si l'injecteur s'adapte bien au systĂšme et au mode de son installation. o ContrĂŽler la pression Ă la sortie de la station de tĂȘte minimum de 2,2 bars. Si cette pression n'est pas atteinte, c'est qu'il faut revoir les trois premiers contrĂŽles. o ContrĂŽler la pression Ă l'entrĂ©e du secteur doit ĂȘtre de 1,2 bars. Si cette pression est faible et si la pression Ă la sortie de la station de tĂȘte est normale contrĂŽler les fuites le long de la conduite principale ou au niveau des accessoires vanne,âŠ. 3. ContrĂŽle du dĂ©bit de l'installation Le dĂ©bit de l'installation sous une pression donnĂ©e pourra ĂȘtre mesurĂ© rĂ©guliĂšrement Ă l'aide d'un compteur montĂ© en station de tĂȘte. Le volume d'eau dĂ©livrĂ© au secteur d'irrigation par heure pourra nous permettre de s'apercevoir de la baisse des dĂ©bits due au colmatage progressif des distributeurs. Ce dĂ©bit de l'installation pourra ĂȘtre estimĂ© en mesurant le dĂ©bit d'un Ă©chantillon de goutteurs qui fonctionnent bien et le multiplier par le nombre de goutteur par secteur. Cette mesure pourra se faire une Ă deux fois par an. 4. ContrĂŽle du bouchage des goutteurs et de l'homogĂ©nĂ©itĂ© de leur dĂ©bit Ce type de mesure pourra se faire obligatoirement en dĂ©but de campagne pour les goutteurs dĂ©jĂ utilisĂ©s. Il peut ĂȘtre rĂ©alisĂ© plus souvent en cas oĂč les distributeurs sont anciens et oĂč le rĂ©seau est mal entretenu, et chaque fois qu'on constate une hĂ©tĂ©rogĂ©nĂ©itĂ© dans les irrigations. Pour contrĂŽler le dĂ©bit des goutteurs ainsi que le coefficient d'uniformitĂ© de leurs dĂ©bits, on place un rĂ©cipient sous le goutteur et Ă l'aide d'un chronomĂštre on pourra mesurer le volume d'eau dĂ©livrĂ© par le goutteur par unitĂ© de temps. Ces mesures porteront sur 4 distributeurs par rampe sur au moins 4 rampes. Les rampes choisies sont la 1Ăšre et la derniĂšre rampe ainsi que les rampes situĂ©es au 1/3 et au 2/3 de la longueur du porte-rampe. Sur une mĂȘme rampe on choisira le 1er et le dernier distributeur et les distributeurs localisĂ©s au 1/3 et 2/3 de la longueur de rampe. On classe les dĂ©bits mesurĂ©s par ordre croissant. On calcule la moyenne qmin des 4 mesures de dĂ©bit les plus faibles et la moyenne q de l'ensemble des dĂ©bits mesurĂ©s. Le coefficient d'uniformitĂ© CU est Ă©gal Ă CU = qmin/q x 100 Si CU est supĂ©rieur Ă 90, il n'y a pas lieu d'intervenir sur le rĂ©seau. Si CU est comprise entre 90 et 70, on doit nettoyer le rĂ©seau. Si CU est infĂ©rieur Ă 70, on doit rechercher les causes du colmatage et traiter. Le nettoyage des distributeurs se fera par purge et aussi par de l'eau de javel et de l'acide. 5. ContrĂŽle de l'Ă©tat des conduites et des accessoires En cas de perte de pression Ă l'entrĂ©e du secteur et si la pression Ă la sortie de la station de tĂȘte est normale, il faut vĂ©rifier sâil n'y a pas de fuite dans la conduite principale ou dans les piĂšces de raccordement et accessoires. On doit alors rĂ©parer et remplacer les parties dĂ©fectueuses. 6. OpĂ©rations d'entretiens et de nettoyage L'entretien rĂ©gulier des Ă©lĂ©ments du rĂ©seau s'effectue, en dĂ©but, au cours et Ă la fin de la culture, en vue d'Ă©viter le problĂšme de colmatage des distributeurs. Ce colmatage est liĂ© Ă la qualitĂ© et l'origine de l'eau. L'analyse de l'eau permet de dĂ©terminer les risques potentiels de ce colmatage. Il existe trois type de colmatage le colmatage biologique causĂ© par les algues, les bactĂ©ries, les champignons; le colmatage physique dĂ» Ă la prĂ©sence de dĂ©pĂŽt de particule fine, de sable, de limon ou d'argile ainsi que des corps Ă©trangers plastiques,⊠; et le colmatage chimique dĂ» au problĂšme de prĂ©cipitation calcaire, ou cimentation de limon ou d'argile. En gĂ©nĂ©ral, les eaux de surface oueds, barrage, ⊠renferment des algues, des bactĂ©ries, et des composĂ©s organiques responsables du colmatage biologique; et des particules trĂšs fines responsables du colmatage physique. Les eaux souterraines peuvent ĂȘtre chargĂ©es en sable responsable du colmatage physique ou en ions bicarbonates responsables du colmatage chimique. Pour le colmatage physique on doit prĂ©voir un systĂšme de filtration composĂ© d'un hydrocyclone et de filtres Ă tamis ou Ă lamelles et intervenir par des opĂ©rations de nettoyage de filtre et de rĂ©seau purge. Pour le colmatage chimique, on doit traiter chimiquement Ă l'acide pour neutraliser les ions bicarbonates. Pour le colmatage biologique on doit prĂ©voir un systĂšme de filtration composĂ© de filtres Ă sable et de filtres Ă tamis ou Ă lamelles. Dans le cas d'utilisation de bassin, il faut le maintenir propre en procĂ©dant rĂ©guliĂšrement Ă son nettoyage en rĂ©alisant des curages. 7. Traitement chimique de l'eau d'irrigation Le traitement chimique prĂ©voie une injection de l'eau de javel et de l'acide dans l'eau d'irrigation. Pour lutter contre le colmatage biologique, on injecte de l'eau de javel 1 Ă 5 ppm c'est Ă dire 1 Ă 5 g/m3 d'eau. Pour le colmatage chimique, dĂ» au problĂšme de prĂ©cipitation calcaire, ou cimentation de limon ou d'argile, on doit injecter de l'acide. Au cours de la culture, on injecte l'acide nitrique Ă raison de 300 ml/m3 d'eau pour traiter les eaux riches en ions bicarbonates. En fin de culture, juste avant la fin des irrigations, on traite Ă l'acide Ă 2%o en vue de nettoyer le rĂ©seau et surtout les distributeurs. 8. Nettoyage des filtres Lorsque on ouvre le filtre Ă lamelles et que celui-ci est sale figure 12voir fichier pdf, on sĂ©pare les disques ou lamelles entre elles et on envoie un jet d'eau clair en vue d'Ă©vacuer les impuretĂ©s. Lorsque la pression baisse Ă la sortie d'un filtre et la diffĂ©rence avec la pression Ă l'entrĂ©e dĂ©passe 0,3 bars, le filtre se colmate, il est nĂ©cessaire de le nettoyer. Le nettoyage se fait diffĂ©remment suivant le type de filtres. Le nettoyage d'un filtre Ă sable se fait par contre lavage, en faisant passer de l'eau filtrĂ©e en sens inverse de la filtration, par un jeu de vannes. Les impuretĂ©s sont Ă©vacuĂ©es Ă l'extĂ©rieur par le courant d'eau. Le lavage du sable du filtre se fera une fois par an et on doit le changer une fois par deux ans. Le nettoyage du filtre Ă tamis se fait par brossage et rinçage des tamis. La brosse doit ĂȘtre souple et non mĂ©tallique. Le montage de certains filtres Ă lamelles permet de faire un flashage pour Ă©vacuer les impuretĂ©s en ouvrant un robinet situĂ© Ă la partie basse du filtre. Ce systĂšme de flashage pourra ĂȘtre appliquĂ© Ă©galement pour Ă©vacuer le sable dĂ©posĂ© dans la purge de l'hydrocyclone. Le nettoyage des filtres Ă sable, Ă tamis ou Ă lamelles peut ĂȘtre automatique. L'automatisation est commandĂ©e soit par la diffĂ©rence de pression entre l'entrĂ©e et la sortie du filtre, soit par une horloge nettoyage Ă pĂ©riode fixe. Le nettoyage automatique est conseillĂ© notamment lorsque la qualitĂ© de l'eau nĂ©cessite plusieurs nettoyages par jour. 9. Vidange et purge du rĂ©seau La vidange ou purge du rĂ©seau doit se faire Ă son installation, en dĂ©but et en fin de culture et chaque fois qu'on intervient ou qu'on rĂ©pare le rĂ©seau. A la premiĂšre mise en eau et en fin de saison, la purge du rĂ©seau se fait dans le but d'Ă©vacuer les sĂ©diments qui se sont dĂ©posĂ©s. En cours de campagne, la purge concerne le nettoyage des rampes et antennes en vue d'assurer un bon fonctionnement des distributeurs. On doit purger les bouts de rampes 1 Ă 2 fois tous les deux mois. Pour purger le rĂ©seau d'un secteur d'irrigation localisĂ©e, on ouvre les bouchons des porte-rampes ainsi que les extrĂ©mitĂ©s des rampes et ensuite la vanne. on augmente momentanĂ©ment la pression de l'eau dans le systĂšme lui-mĂȘme ou Ă l'aide d'un compresseur surpresseur. Le mĂ©lange air-eau est efficace pour dĂ©boucher les goutteurs. On laisse couler l'eau jusqu'Ă ce que celle-ci soit claire. Ce nettoyage du rĂ©seau se fait vue d'Ă©viter le bouchage des distributeurs. En cas de fuites dues Ă des perforations ou casses de conduites ou dĂ©tĂ©rioration des vannes ou autres piĂšces ou raccords on doit les rĂ©parer ou remplacer les parties dĂ©fectueuses pour Ă©viter les pertes d'eau et de pression et juste aprĂšs purger le rĂ©seau. A la fin de la campagne, aprĂšs une premiĂšre purge des antennes Ă l'eau claire; on injecte l'acide Ă forte dose descendre jusqu'au pH 2,0 et on s'assure que le dernier goutteur du secteur a bien reçu la solution acide. On laisse l'acide agir pendant 24 heures, on purge et on rince avec une eau ramenĂ©e Ă pH 5,2. Conclusion AprĂšs avoir calculĂ© le besoin en eau de la plante, il faut quâelle soit menĂ©e Ă la plante oĂč elle est plantĂ©e et avec un dĂ©bit convenable, ceci nĂ©cessite certaines considĂ©rations les ressources hydriques, le climat, la culture, le sol propriĂ©tĂ©s physiques, sa vitesse dâinfiltrationâŠ, le choix des distributeurs dâeau, les secteurs dâarrosage, la longueur et diamĂštre des canalisations, les pertes de charges dans lâexploitation, et lâĂ©quipement de la station de pompage. Ainsi, pour mieux gĂ©rer lâirrigation dâune culture, il est important dâinstaller au sein de lâexploitation un ensemble dâoutils de pilotage dâirrigation de prĂ©cision qui permettent de contrĂŽler le systĂšme sol-plante-atmosphĂšre. Ces outils doivent ĂȘtre Ă©talonnĂ©s avant lâinstallation et bien entretenu dans le temps. Une Ă©tude rĂ©alisĂ©e lâannĂ©e derniĂšre par un Ă©tudiant du Complexe Horticole dâAgadir, encadrĂ© par Monsieur EL Fadl a permis de vĂ©rifier que le pilotage dâirrigation doit effectivement sâeffectuer en utilisant le tensiomĂštre ou la sonde dâhumiditĂ© volumĂ©trique Ă 30 cm pour dĂ©clencher lâirrigation et Ă 60 cm pour ajuster la dose dâirrigation qui ne doit pas dĂ©passer la dose maximale nette DNM. A l'aide de capteurs enregistrant les variations du diamĂštre du rameau ou du fruit. Le traitement des donnĂ©es recueillies permet de dĂ©terminer Ă quel moment lâarbre subit une contrainte pouvant affecter la production et de dĂ©clencher alors un apport d'eau. lâinstallation de la station mĂ©tĂ©o au sein de lâexploitation permet la surveillance du climat et par consĂ©quent une estimation du pouvoir Ă©vaporant de lâair. En effet le systĂšme sol-plante-atmosphĂšre est un systĂšme biophysique de nature assez complexe, dans lequel lâarbre joue un rĂŽle liĂ© essentiellement aux conditions environnementales. Le climat dĂ©termine le niveau de la demande atmosphĂ©rique et le sol conditionne la disponibilitĂ© des rĂ©serves en eau pour la plante. Une gestion rationnelle devrait donc se baser sur plus dâun seul outil de supervision. si les moyens matĂ©riels le permettent, le praticien devait faire appel Ă un moyen de contrĂŽle de lâeau dans le sol et un autre moyen de suivi du statut hydrique de lâarbre. La complĂ©mentaritĂ© de ces deux outils ne peut ĂȘtre que bĂ©nĂ©fique.
Utilisation de lâeau dans lâagriculture âșEnglish Version Introduction Irrigation goutte Ă goutte GIZ/Böthling. Alors que 2 litres dâeau suffisent souvent Ă la consommation quotidienne dâune personne, il en faut environ 3 000 pour produire les aliments dont elle a besoin au quotidien[1]. Environ 70 % des prĂ©lĂšvements dâeau douce sont destinĂ©s Ă lâagriculture. Les usages qui en sont faits sont trĂšs variĂ©s et concernent principalement lâirrigation, lâapplication de pesticides et dâengrais et lâĂ©levage des animaux. Plus loin dans la chaĂźne de valeur, lâeau est utilisĂ©e pour prĂ©server les aliments refroidissement, par exemple et pour la transformation. Non seulement lâagriculture consomme dâimportantes ressources en eau, mais elle pollue Ă©galement ces prĂ©cieuses ressources avec des pesticides et des engrais. ConfrontĂ©e Ă une augmentation de la demande dâaliments particuliĂšrement de produits qui consomment beaucoup dâeau, la production agricole va devoir augmenter de 70 % dâici Ă 2050. Sachant que lâagriculture irriguĂ©e peut ĂȘtre jusquâĂ deux fois plus productive que lâagriculture pluviale, il ne fait aucun doute que la consommation dâeau pour lâagriculture va continuer Ă augmenter. Cette Ă©volution permettra dâutiliser les terres de maniĂšre plus efficace et de sĂ©curiser la diversification des cultures tout en offrant une protection contre la variabilitĂ© du climat[2]. MĂȘme si lâutilisation dâeau accroĂźt considĂ©rablement les rendements, elle est Ă©galement source dâimpacts environnementaux nĂ©gatifs. Lâutilisation non durable des ressources peut conduire Ă la baisse des dĂ©bits dâeau, Ă la modification de lâaccĂšs Ă lâeau en aval, Ă lâaccroissement de la salinitĂ© du sol ou Ă la rĂ©duction des zones humides ayant dâimportantes fonctions Ă©cologiques pour la biodiversitĂ©, la rĂ©tention des nutriments et la maĂźtrise des crues. Les impacts du changement climatique affectent dĂ©jĂ lâagriculture irriguĂ©e dans la mesure oĂč la demande en eau augmente alors que lâeau est de moins en moins disponible lĂ ou lâirrigation est particuliĂšrement nĂ©cessaire. Lorsque les politiques sont appropriĂ©es, elles crĂ©ent des incitations qui garantissent une gouvernance efficace et permettent aux agriculteurs de prĂ©server la biodiversitĂ©, de protĂ©ger les Ă©cosystĂšmes et de minimiser les impacts environnementaux. La gouvernance est assurĂ©e par des institutions dâirrigation qui doivent rĂ©pondre aux besoins des agriculteurs. Leurs principaux objectifs sont notamment dâassurer un approvisionnement en eau fiable et en quantitĂ© suffisante et de garantir lâefficacitĂ© et lâĂ©galitĂ© de lâaccĂšs. Cela obligera les agriculteurs Ă modifier leurs comportements et nĂ©cessitera des investissements dans la modernisation des infrastructures, la restructuration institutionnelle et la modernisation des capacitĂ©s techniques des agriculteurs et des gestionnaires de lâeau. Lâagriculture est un secteur dâintervention majeur dans les contributions dĂ©terminĂ©es au niveau national qui sont destinĂ©es Ă favoriser lâattĂ©nuation du changement climatique. Il est donc indispensable dâamĂ©liorer lâefficacitĂ© de lâutilisation de lâeau, que ce soit pour lâadaptation au changement climatique ou pour son attĂ©nuation. [3] Gestion durable des ressources en eau Lorsquâelles sont pertinentes, les stratĂ©gies de gestion des ressources en eau permettent de prĂ©server lâeau et lâĂ©nergie tout en amĂ©liorant la production. Ces stratĂ©gies comprennent notamment la planification de lâirrigation et la gestion de lâirrigation spĂ©cifique Ă chaque culture. Elles peuvent ĂȘtre mises en Ćuvre grĂące Ă des outils tels que lâoutil dâĂ©valuation des besoins en eau ou lâoutil sol » disponibles dans la BoĂźte Ă outils pour les SPIS consacrĂ©e aux systĂšmes dâirrigation solaires. En choisissant des Ă©nergies renouvelables pour le pompage de lâeau, les agriculteurs peuvent rĂ©duire leurs coĂ»ts de maniĂšre significative tout en utilisant des technologies respectueuses du climat. Certaines voix sâĂ©lĂšvent toutefois contre lâutilisation des systĂšmes dâirrigation Ă Ă©nergie solaire en raison du risque de surexploitation des eaux souterraines. Plusieurs paramĂštres doivent donc ĂȘtre Ă©valuĂ©s avant de lancer un quelconque concept de projet, notamment la qualitĂ© et la quantitĂ© dâeau, la capacitĂ© de recharge, la composition des couches gĂ©ologiques, la pluviomĂ©trie, lâĂ©vapotranspiration et le ruissellement, la topographie et la cartographie de lâutilisation des terres. Pour garantir la mise en place dâun systĂšme dâirrigation efficace, il est essentiel de connaĂźtre prĂ©cisĂ©ment les besoins en eau de la culture et les caractĂ©ristiques des sources dâeau avant de prĂ©voir sa configuration. En savoir plus⊠Comprendre les ressources en eau locales En utilisant lâeau de maniĂšre efficace pour lâagriculture, il est possible dâĂ©conomiser non seulement de lâeau mais aussi des ressources Ă©nergĂ©tiques tout en amĂ©liorant les rendements. La premiĂšre chose consiste donc Ă se faire une idĂ©e prĂ©cise des ressources en eau locales. Le type de source dâeau permet, par exemple, de choisir la mĂ©thode de prĂ©lĂšvement qui varie selon sâil sâagit dâeau de surface, dâeau souterraine ou dâeau non conventionnelle. Cette derniĂšre catĂ©gorie ne reprĂ©sente que 1 % de lâeau utilisĂ©e pour lâagriculture au niveau mondial et englobe les eaux usĂ©es traitĂ©es et lâeau dĂ©salinisĂ©e qui est notamment utilisĂ©e en MĂ©diterranĂ©e, au Moyen-Orient, dans les Andes ou dans les Ăźles et qui implique de recourir Ă des technologies spĂ©cifiques qui peuvent Ă©galement ĂȘtre alimentĂ©es avec des Ă©nergies renouvelables. Un autre facteur important est lâĂ©lĂ©vation ou la profondeur de la masse d'eau. Il permet en effet de dĂ©terminer si lâeau peut arriver sous pression, ce qui est particuliĂšrement important pour lâeau de surface, et de savoir si la gravitĂ© Ă elle seule est suffisante pour alimenter des systĂšmesdâirrigationsous pression ou si des pompes doivent ĂȘtre ajoutĂ©es. Pour lâeau souterraine, la profondeur est dĂ©terminante pour calculer la puissance de la pompe et les coĂ»ts associĂ©s. En savoir plus⊠Comprendre les eaux souterraines Lâeau souterraine est celle que lâon trouve sous terre dans les fissures et les pores du sol, du sable et de la roche, quâon appelle aquifĂšre. La recharge des eaux souterraines se fait naturellement par les prĂ©cipitations ou lâinfiltration des eaux provenant dâautres Ă©tendues dâeau. Le mouvement des eaux souterraines entre les zones dâalimentation et les zones de dĂ©versement des aquifĂšres est appelĂ© Ă©coulement des eaux souterraines. Il se fait le plus souvent lentement par les fissures et les pores des matiĂšres rocheuses. Le niveau des eaux souterraines peut varier en fonction des saisons et des annĂ©es. Il est gĂ©nĂ©ralement Ă©levĂ© aprĂšs la saison des pluies et faible Ă la fin de la saison sĂšche. Certains types dâactivitĂ©s agricoles peuvent avoir un impact nĂ©gatif sur le processus de recharge, entraĂźnant notamment lâimpermĂ©abilisation du sol ou son tassement en raison de lâutilisation de machines lourdes qui empĂȘchent lâeau de sâinfiltrer. Le choix des cultures et la couverture vĂ©gĂ©tale ont Ă©galement une influence sur lâinfiltration. Des mesures rĂ©glementaires permettent de surmonter les pĂ©nuries dâeaux souterraines et de mettre en place une gestion durable des ressources en eau. En savoir plus⊠Le module PrĂ©server lâeau de la BoĂźte Ă outils pour les SPIS est consacrĂ© Ă la gestion des eaux souterraines et aux principes dâune gestion durable de lâeau. Il se penche sur les risques et les impacts liĂ©s Ă lâĂ©puisement des eaux souterraines et vise Ă sensibiliser les institutions de planification et les futurs utilisateurs de systĂšmes dâirrigation Ă Ă©nergie solaire Ă lâutilisation responsable et durable des sources dâeau. Ce module donne Ă©galement des orientations pratiques visant Ă intĂ©grer la gestion de lâeau dans la planification et lâexploitation des systĂšmes dâirrigation. En savoir plus⊠Ăvaluer les impacts environnementaux et socio-Ă©conomiques de lâirrigation MĂȘme si la quantitĂ© dâeau est primordiale pour garantir la durabilitĂ© Ă long terme et joue un rĂŽle clĂ© dans le choix des cultures et des systĂšmes dâirrigation les mieux adaptĂ©s au contexte agricole et environnemental climat, sols et paysage, la qualitĂ© de lâeau a, elle aussi, une influence considĂ©rable sur lâadĂ©quation des cultures. CombinĂ©e Ă un systĂšme dâirrigation prĂ©cis, la prĂ©sence de certains Ă©lĂ©ments dans le sol peut avoir un impact positif ou nĂ©gatif sur certaines plantes et conduire Ă des dĂ©gradations environnementales dans lâĂ©cosystĂšme agricole. En savoir plus⊠Conseils sur lâefficacitĂ© de lâirrigation Lâutilisation rationnelle de lâeau dâirrigation et sa conservation sont essentielles. En effet, cette ressource limitĂ©e et consommatrice dâĂ©nergie pour les prĂ©lĂšvements dâeau, la prĂ©paration, le traitement, etc. est Ă©galement en compĂ©tition avec les besoins en eau des Ă©cosystĂšmes environnants. Parmi les mesures qui permettent dâamĂ©liorer lâefficacitĂ© de lâirrigation figurent notamment les Ă©lĂ©ments suivants cartographie de lâemplacement optimal des canalisations dâirrigation pour rĂ©pondre aux besoins en eau du sol et des cultures ; prĂ©servation et intĂ©gration de grands arbres dans la zone cultivĂ©e pour apporter de lâombre, et donc ralentir le processus dâĂ©vaporation, et pour accroĂźtre la disponibilitĂ© en eau dans la zone dâenracinement des cultures ; analyse du sol pour dĂ©terminer son taux d'humiditĂ© et sa capacitĂ© au champ ; Ă©laboration dâun programme dâirrigation en fonction de la relation sol-plante cultivĂ©e ou de mesures atmosphĂ©riques pour rĂ©duire la consommation dâeau et amĂ©liorer les rendements ; paillage, en tant que technique efficace de rĂ©duction de lâĂ©vaporation de lâhumiditĂ© du sol, de protection du sol contre le compactage et les tempĂ©ratures extrĂȘmes et de conditionnement du sol ; culture intercalaire pour obtenir un rendement plus important en utilisant des ressources ou en faisant appel Ă des processus Ă©cologiques qui ne seraient autrement pas utilisĂ©s ; captage de lâeau de pluie pour Ă©viter lâĂ©rosion des sols et amĂ©liorer la recharge des eaux souterraines ; contrĂŽle rĂ©gulier de la consommation dâeau ; et enfin, amĂ©lioration des sillons et rĂ©duction de lâĂ©vaporation en couvrant les systĂšmes de stockage et de transport dâeau. Seul un contrĂŽle actif et rĂ©gulier peut garantir lâefficacitĂ© dâun systĂšme dâirrigation. Toute mesure dâamĂ©lioration doit ĂȘtre soigneusement examinĂ©e avant sa mise en Ćuvre et des informations de base doivent ĂȘtre prĂ©alablement recueillies. En savoir plus⊠Publications et outils Ăvaluation globale de la gestion de lâeau en agriculture LâĂvaluation globale de la gestion de lâeau en agriculture est une analyse critique des bĂ©nĂ©fices, des coĂ»ts et des impacts des 50 derniĂšres annĂ©es dâĂ©volution de lâeau, des enjeux auxquels les communautĂ©s sont aujourdâhui confrontĂ©es dans la gestion de lâeau, et des solutions que les populations du monde entier ont mises au point. Elle dĂ©crit les principales tendances eau-alimentation-environnement qui influencent nos vies aujourdâhui et utilise des scĂ©narios pour Ă©tudier les consĂ©quences dâune sĂ©rie dâinvestissements potentiels. Elle a pour but dâinformer les investisseurs et les dĂ©cideurs politiques sur les choix qui sâoffrent Ă eux en matiĂšre de gestion de lâeau et de lâalimentation en tenant compte de critĂšres aussi influents que la pauvretĂ©, les Ă©cosystĂšmes, la gouvernance et la productivitĂ©. Elle couvre lâagriculture pluviale, lâirrigation, les eaux souterraines, lâeau de qualitĂ© infĂ©rieure, la pĂȘche, lâĂ©levage, le riz, les terres et les bassins fluviaux. En savoir plus⊠Pistes de rĂ©forme pour les politiques de lâeau dans lâagriculture Ce rapport prĂ©sente des pistes de rĂ©forme potentielles en vue dâune utilisation durable de lâeau dans lâagriculture. Il est basĂ© sur une Ă©tude approfondie de certaines rĂ©formes agricoles et hydriques et sur la consultation de nombreux experts politiques. Il prĂ©sente une thĂ©orie du changement qui souligne lâimportance de la flexibilitĂ© dans le timing et la conception des rĂ©formes si lâon veut parvenir Ă des changements politiques pratique et efficaces. Les gouvernements doivent prĂ©parer leurs futures rĂ©formes en menant des activitĂ©s continues de recherche, dâĂ©ducation et de gouvernance afin de tirer parti des possibilitĂ©s de rĂ©forme au bon moment. Cinq conditions nĂ©cessaires sont identifiĂ©es pour garantir le succĂšs du processus de rĂ©forme faire en sorte que la dĂ©finition des problĂšmes, la fixation des objectifs et lâĂ©valuation soient basĂ©es sur des preuves ; sâassurer que la gouvernance et les institutions sont en phase avec le changement politique ; solliciter les parties prenantes de maniĂšre stratĂ©gique et instaurer la confiance ; rééquilibrer les incitations Ă©conomiques pour attĂ©nuer les pertes Ă court terme ; et dĂ©finir un calendrier de rĂ©forme intelligent et modifiable pour apporter de la flexibilitĂ© sur le long terme. Le rapport estime que ces conditions sont nĂ©cessaires pour rĂ©ussir Ă mettre en Ćuvre quatre changements politiques difficiles modifier lâutilisation de lâeau dans lâagriculture ; Ă©liminer les subventions qui ont un impact nĂ©gatif sur les ressources en eau ; rĂ©glementer lâutilisation des eaux souterraines et lutter contre la pollution non ponctuelle. En savoir plus... Vers un avenir de sĂ©curitĂ© alimentaire et de sĂ©curitĂ© de lâeau â perspectives urgentes pour les dĂ©cideurs politiques Ce livre blanc de la FAO offre aux dĂ©cideurs politiques un aperçu des principales tendances en matiĂšre dâutilisation de lâeau dans lâagriculture, particuliĂšrement pour la culture et lâĂ©levage. En 2050, lâagriculture sera toujours un facteur essentiel de croissance Ă©conomique, de rĂ©duction de la pauvretĂ© et de sĂ©curitĂ© alimentaire malgrĂ© le dĂ©clin proportionnel de la part des revenus agricoles dans le produit intĂ©rieur brut. Lâutilisation de lâeau dans lâagriculture restera trĂšs importante, les zones irriguĂ©es progresseront et la compĂ©tition pour lâaccĂšs aux ressources en eau se renforcera dans tous les secteurs. MĂȘme si, en 2050, les terres et lâeau seront probablement disponibles en quantitĂ© suffisante pour atteindre les objectifs mondiaux de production alimentaire, la pauvretĂ© et lâinsĂ©curitĂ© alimentaire resteront des problĂšmes pressants dans plusieurs rĂ©gions. En effet, lâeau sera suffisante pour rĂ©pondre Ă la demande alimentaire mondiale, mais un nombre croissant de rĂ©gions devront gĂ©rer des pĂ©nuries de plus en plus frĂ©quentes dues Ă une concurrence accrue. Les prĂ©visions pour 2050 prĂ©sentĂ©es dans ce document rĂ©vĂšlent une quĂȘte de mĂ©canismes de gouvernance innovants et efficaces pour attĂ©nuer les impacts de ces pĂ©nuries. Des investissements dans les technologies et lâinfrastructure de gestion de lâeau seront nĂ©cessaires pour assurer une utilisation efficace de lâeau, la sĂ©curitĂ© alimentaire et la protection des ressources naturelles. En savoir plus⊠BoĂźte Ă outils pour les systĂšmes dâirrigation Ă Ă©nergie solaire SPIS La boĂźte Ă outils pour les systĂšmes dâirrigation Ă Ă©nergie solaire Solar Powered Irrigation Systems â SPIS est destinĂ©e aux conseillers, prestataires de services et praticiens intervenant dans le domaine de lâirrigation solaire afin quâils puissent fournir un large Ă©ventail de conseils pratiques aux utilisateurs finals, aux dĂ©cideurs politiques et aux bailleurs de fonds. Il est ainsi possible de minimiser les risques associĂ©s Ă lâefficacitĂ© du systĂšme, Ă la viabilitĂ© financiĂšre et Ă lâutilisation non durable des ressources en eau. La boĂźte Ă outils comprend des modules informatifs complĂ©tĂ©s par des outils logiciels conviviaux feuilles de calcul, listes de contrĂŽle, lignes directrices. Les modules et les outils prĂ©sentĂ©s portent sur lâĂ©valuation des besoins en eau, la comparaison de la viabilitĂ© financiĂšre, la dĂ©termination de la rentabilitĂ© pour les exploitations agricoles et le dĂ©lai dâamortissement de lâinvestissement dans les SPIS, la conception et lâentretien durables dâun SPIS, la mise en Ă©vidence des aspects essentiels de qualitĂ© de rĂ©alisation, etc. Bien que principalement destinĂ©s Ă la conception et Ă la mise en Ćuvre de systĂšmes dâirrigation Ă Ă©nergie solaire, la plupart des outils peuvent Ă©galement ĂȘtre utilisĂ©s pour dâautres types de systĂšmes dâirrigation. En savoir plus⊠Certains outils sont plus particuliĂšrement destinĂ©s Ă lâĂ©valuation de lâimpact environnemental, au calcul des besoins en eau des cultures et Ă la mise en place dâune utilisation durable et efficace de lâeau, ce qui signifie quâils ne sont pas exclusivement associĂ©s au dĂ©ploiement des SPIS et qu'ils peuvent ĂȘtre utilisĂ©s pour Ă©valuer dâautres systĂšmes dâirrigation. Outil dâĂ©valuation de lâimpact Cet outil basĂ© sur Excel est conçu sous la forme dâun questionnaire portant sur lâĂ©volution de la population et la migration, le rĂŽle des femmes, les minoritĂ©s et les groupes autochtones, les revenus et les infrastructures, les effets rĂ©gionaux dans le pays, lâimplication des utilisateurs, les ressources naturelles et lâenvironnement. Lâutilisateur final obtient une Ă©valuation des impacts socio-Ă©conomiques et environnementaux basĂ©e sur le score obtenu. En savoir plus⊠Outil dâĂ©valuation des besoins en eau Cet outil sert Ă calculer les besoins en eau des cultures et des animaux dâĂ©levage en fonction de la situation gĂ©ographique et des rĂ©gimes des prĂ©cipitations du site. Une fois que toutes les donnĂ©es sur la superficie de chaque culture, le nombre de tĂȘtes de bĂ©tail, les principales propriĂ©tĂ©s du sol et les rĂ©gimes des prĂ©cipitations et des tempĂ©ratures ont Ă©tĂ© saisies, lâoutil produit un rĂ©sumĂ© qui compile les principaux besoins en eau tout au long de lâannĂ©e, en faisant la distinction entre lâirrigation et lâeau de savoir plus⊠Liste de contrĂŽle de la gestion des ressources en eau Cet outil permet de se faire une idĂ©e de la disponibilitĂ© des ressources en eau. Au moyen dâune liste de contrĂŽle, lâutilisateur peut consulter des donnĂ©es sur les ressources en eau et la gestion durable de lâeau. En savoir plus⊠Outil sol » Pour rĂ©ussir Ă dĂ©terminer les besoins en eau de lâagriculture, il est important de bien connaĂźtre la structure du sol. Le calcul du pourcentage des diffĂ©rentes tailles de particules sable, limon et argile permet dâen savoir plus sur les caractĂ©ristiques du sol. En effet, la rĂ©partition des tailles de particules donne des informations sur la capacitĂ© de rĂ©tention dâeau, la capacitĂ© de stockage des nutriments destinĂ©s aux plantes, lâaĂ©ration, les taux de matiĂšre organique, le drainage interne, la compactibilitĂ©, la vulnĂ©rabilitĂ© Ă lâĂ©rosion par le vent et lâeau, lâinfiltration des polluants, etc. Cet outil basĂ© sur Excel comprend un calculateur de texture du sol simple Ă utiliser, qui permet de calculer les taux de percolation et dâen tirer un calendrier dâirrigation optimal pour une culture donnĂ©e. En introduisant les pourcentages respectifs des diffĂ©rentes tailles de particules, il est possible dâestimer la profondeur dâirrigation nette et brute, les besoins en eau dâirrigation, le nombre de passages dâirrigation et lâintervalle entre les passages en jours. Ces informations sont Ă©galement utiles pour calculer la taille du rĂ©servoir dâeau. En savoir plus⊠Outil de dimensionnement de la pompe Une fois que les besoins en eau des cultures et du bĂ©tail sont connus, cet outil permet de calculer la hauteur de refoulement et de dĂ©terminer la technologie de pompage la mieux adaptĂ©e. Il calcule Ă©galement les besoins en Ă©nergie et donc la taille du panneau solaire dont le systĂšme de pompage a besoin. Les variables Ă saisir sont, entre autres, le diamĂštre et la longueur de la canalisation, la quantitĂ© et le type des raccords, le dĂ©bit de prĂ©lĂšvement durable et le rendement prĂ©vu de la source dâeau. Ceci montre combien il est important de connaĂźtre avec prĂ©cision les ressources en eau existantes. En savoir plus⊠Filtre des risques liĂ©s Ă lâeau Cet outil en ligne a Ă©tĂ© Ă©laborĂ© par le Fonds mondial pour la nature WWF et par lâInstitution financiĂšre de dĂ©veloppement allemande DEG. Lâoutil Filtre des risques liĂ©s Ă lâeau permet aux utilisateurs dâexplorer les risques liĂ©s Ă lâeau, de les Ă©valuer et dây rĂ©agir dans quatre domaines prioritaires exploration, Ă©valuation, valorisation et rĂ©ponse aux risques. En savoir plus⊠Outils Aqueduct Les outils dâAqueduct Ă©tablissent une cartographie des risques liĂ©s Ă lâeau tels que les inondations, les sĂ©cheresses et le stress hydrique sur la base de donnĂ©es open source examinĂ©es par les pairs. Deux outils sont actuellement disponibles lâoutil Aqueduct Water Risk Atlas qui cartographie et analyse les risques hydriques actuels et futurs dans diffĂ©rents lieux et lâoutil Aqueduct Country Ranking qui permet de comparer les risques liĂ©s Ă lâeau au niveau national et sous-national. Deux autres outils sont en prĂ©paration. Ils porteront sur lâinterconnexion avec lâalimentation et lâagriculture et sur les risques dâinondation. En savoir plus⊠CropWat â FAO CropWat est un programme informatique destinĂ© Ă la planification et Ă la gestion de lâirrigation, qui sert dâoutil dâappui aux dĂ©cisions. DĂ©veloppĂ© par la Division des terres et des eaux de la FAO, CROPWAT permet de calculer les besoins en eau et les besoins dâirrigation en fonction du sol, du climat et de la culture. Il permet aussi de prĂ©parer des calendriers dâirrigation pour diffĂ©rentes conditions de gestion et de calculer lâapprovisionnement en eau pour diffĂ©rents systĂšmes de culture. Il est Ă©galement possible de lâutiliser pour Ă©valuer les pratiques dâirrigation des agriculteurs et pour estimer les performances des cultures en rĂ©gime pluvial et en rĂ©gime irriguĂ©. En savoir plus⊠AquaMaps â FAO AquaMaps est la base de donnĂ©es spatiale en ligne de la FAO sur lâeau et lâagriculture. Elle permet, grĂące Ă une interface simple, dâaccĂ©der Ă des donnĂ©es spatiales rĂ©gionales et mondiales sur les ressources en eau et la gestion de lâeau qui sont considĂ©rĂ©s comme des informations de rĂ©fĂ©rence et qui sont produites par la FAO ou des fournisseurs de donnĂ©es externes. En savoir plus⊠AquaCrop â FAO AquaCrop est le modĂšle de dĂ©veloppement des cultures mis au point par la FAO pour lutter contre lâinsĂ©curitĂ© alimentaire et Ă©valuer lâimpact de lâenvironnement et de la gestion sur la production agricole. Lâoutil simule la rĂ©ponse Ă lâeau des cultures herbacĂ©es en termes de rendement. Il est particuliĂšrement adaptĂ© aux situations dans lesquelles lâeau est un facteur clĂ© de limitation de la production agricole. AquaCrop comprend des manuels de rĂ©fĂ©rence et des guides de formation ainsi quâune sĂ©rie de 43 tutoriels pour apprendre Ă se servir de lâoutil. En savoir plus⊠WaPOR â FAO Pour nous, comme pour les gĂ©nĂ©rations futures, garantir la sĂ©curitĂ© alimentaire tout en utilisant les ressources en eau de maniĂšre durable constituera un dĂ©fi majeur. Lâagriculture Ă©tant un grand utilisateur dâeau, il est important de contrĂŽler soigneusement la productivitĂ© de lâeau dans lâagriculture et de trouver des moyens de lâamĂ©liorer. Pour cela, la FAO a créé WaPOR, une base de donnĂ©es publique en quasi temps rĂ©el, basĂ©e sur des donnĂ©s satellites, qui permettra de contrĂŽler la productivitĂ© de lâeau utilisĂ©e pour lâagriculture. En savoir plus⊠ModĂ©lisation des eaux souterraines avec MODFLOW USGS MODFLOW est le modĂšle hydrologique modulaire de lâUSGS. MODFLOW est considĂ©rĂ© comme un standard international pour simuler et prĂ©voir les conditions des eaux souterraines et les interactions entre eaux souterraines et eaux de surface. MODFLOW 6 est actuellement la version standard de MODFLOW distribuĂ©e par lâUSGS. Lâancienne version standard, MODFLOW-2005, est toujours mise Ă jour et supportĂ©e. En savoir plus⊠RĂ©fĂ©rences bibliographiques â â â
Les vagues de chaleur s'enchaĂźnent cet Ă©tĂ© en France et l'ensemble du territoire mĂ©tropolitain subit une sĂ©cheresse historique. Face Ă la multiplication des restrictions liĂ©es Ă lâusage de lâeau, les tensions autour des ressources en eau s'accentuent. Câest le cas en ArdĂšche oĂč un club de moto a volĂ© 400 mĂštres cube dâeau dans une rĂ©serve dĂ©diĂ©e Ă la lutte contre les incendies. Peut-on aller jusqu'Ă entrevoir une guerre de l'eau ? La crainte d'une guerre de l'eau en France. Reportage de ZeĂŻneb Boughzou 1 min France Culture "Lâeau, câest fait pour boire", a-t-on pu lire aussi sur les jacuzzis Ă©ventrĂ©s de 5 habitations fin juillet dernier Ă GĂ©rardmer dans les Hautes-Vosges. Mais la GĂ©ographe Ă lâENS et membre du Haut conseil pour le climat Magali Reghezza rĂ©cuse le terme de "guerre de l'eau" "Le terme de guerre de l'eau est exagĂ©rĂ©. En revanche, on voit des tensions autour de la ressource en eau et du partage" 1 min France Culture Face aux fortes chaleurs en France, la situation des sans-abri est particuliĂšrement inquiĂ©tante. Ă Paris, l'association "DePaul France" leur permet de se rafraĂźchir grĂące Ă la crĂ©ation d'un camping-car dĂ©diĂ© le "Mobil'Douche". Il sillonne les rues de la capitale, cinq fois par semaine, pour leur venir en aide. Ă bord, un salon pour accueillir les personnes sans domicile fixe, et surtout une salle de bain ont Ă©tĂ© installĂ©s. Des douches mobiles pour les sans-abri Ă Paris. Diane Berger a suivi une tournĂ©e du "Mobil'Douche" de l'association DePaul France. 2 min France Culture Pour afficher ce contenu Instagram, vous devez accepter les cookies RĂ©seaux cookies permettent de partager ou rĂ©agir directement sur les rĂ©seaux sociaux auxquels vous ĂȘtes connectĂ©s ou d'intĂ©grer du contenu initialement postĂ© sur ces rĂ©seaux sociaux. Ils permettent aussi aux rĂ©seaux sociaux d'utiliser vos visites sur nos sites et applications Ă des fins de personnalisation et de ciblage Rights Watch juge sĂ©vĂšrement le Mali. L'ONG vient de publier un rapport sur la situation des droits de l'Homme dans le pays et Ă©voque de nombreuses rĂ©pressions ainsi qu'une justice arbitraire depuis les deux derniers coups d'Ă©tat du PrĂ©sident Assimi Goita. Des accusations qui tombent en pleine visite d'un expert indĂ©pendant de l'ONU chargĂ© justement d'Ă©tudier les droits de l'homme au Mali. Le mot n'est pas dĂ©nuĂ© de sens, on parle bien d'un phĂ©nomĂšne depuis hier au cinĂ©ma. La bande-dessinĂ©e la plus vendue de la planĂšte One Piece, le cĂ©lĂšbre manga du Japonais Eiichiro Oda, promet d'attirer plusieurs milliers de spectateurs. Les avant-premiĂšres, parfois théùtres de scĂšnes de liesse voire de dĂ©bordements, ont donnĂ© le ton. AprĂšs deux productions Ă plus de 500 000 entrĂ©es l'an passĂ©, le mariage entre BD nippone et septiĂšme art semble donc s'installer dans la durĂ©e. Le manga se dĂ©veloppe au cinĂ©ma. Par HĂ©loĂŻse DĂ©carre 1 min France Culture Pour afficher ce contenu Twitter, vous devez accepter les cookies RĂ©seaux cookies permettent de partager ou rĂ©agir directement sur les rĂ©seaux sociaux auxquels vous ĂȘtes connectĂ©s ou d'intĂ©grer du contenu initialement postĂ© sur ces rĂ©seaux sociaux. Ils permettent aussi aux rĂ©seaux sociaux d'utiliser vos visites sur nos sites et applications Ă des fins de personnalisation et de ciblage publicitaire.